

What are we looking for?

- Flavor Changing Neutral currents
 - Explore SUZY mass scales
 ~104 TeV → ~50 events
 - Signature: Electrons approaching the kinematic limit of 105MeV
- SM $\mu^- \rightarrow e^- \gamma$ expected rate very low BR < 10^{-54}

Basic Method

- Low energy muon beam strikes target
- μ ranges out in target, orbits nucleus
- Lifetime ~700nsec in aluminum
 - ~40% muon capture $\mu^- N \to \nu_\mu N'$ N' disintegration releases protons and neutrons
 - ~60% decay in orbit $\mu^- \to \mathrm{e}^- \nu_\mu \bar{\nu}_e$ These "DIO" electron energy typically < ½ the kinematic limit
- Hope a few do something more interesting

Previous Experiment: SINDRUM II

Reducing Prompt Background

- Pulsed beam
- Ignore first 500-700nsec
- What isn't eliminated is more easily measured

Reducing Cosmic Background

- Efficient, full coverage cosmic ray veto
- Higher intensity

Irreducible Backgrounds

 Rely exclusively on momentum resolution to understand and reduce these

and reduce these • Radiative π decay $\pi^{-}N \to \gamma N^{'}$ $\gamma \to e^{+}e^{-}$

■ DIO "leakage"

Detector Geometry

Detector Geometry

- Material in DIO region
 - → scattering
 - → high rate
- Vacuum needed ... but complicates detector
 - Gas detectors
 - Must not leak
 - Must handle Δp~1 atm
 - Any detector
 - Heat flow must be engineered in

What Detector(s) to Use?

- Many backgrounds scale with resolution
- Particles of interest are ~100MeV electrons

⇒ Low Mass Tracker

- Large volume to be instrumented
- Cost is always an issue!

⇒ Drift Chamber

- Drift chambers benefit from time reference, aka t₀
- Looking for a very rare event Want internal confirmation
 - ⇒ EM Calorimeter downstream of Tracker

Mu2e Layout

Uniform field around detector

Tracker Option: Open Cell

Open cell option with wires for anode & cathode

Tracker Option: Straws

- 18 "stations" with straws transverse to beam
- Vacuum between stations to keep mass down
- Naturally moves readout and support to large radii

Basic Design

Straw Termination

Panel

- 5mm OD straws ...
 like ATLAS TRT
 - Known to handle high rates
 - For lowr mass:
 Use 15µm Mylar
 instead of 25µm Kapton
- Gaps between straws ...
 like NA62 (CERN)
 - Allows looser tolerance
 - Less concern about expansion due to pressure

Gaps and Double Layer

Close packed

- Pluses
 - Self-supporting (without tension)
 - Fewer straws
 - → Lower mass, cost
- Minuses
 - Accumulate straw tolerances
 - Sensitive to expansion due to differential pressure ... acts differently when operated in vacuum

Gaps between Straws

- Pluses ...
 - Precision of straw less critical
 - Expansion has no cumulative affect
 → operation ~same in vacuum and air
- Minuses
 - Need to tension straws
 - Need double layer to avoid holes in coverage

Station

- 12 "panels" at 30° rotations, form a station
- Made from two "planes" with 6 panels each
- 30° stereo angles give 400μm resolution along wire
- Straw termination and readout at r>70cm

Support

Front End Electronics

- Preamps at straw ends
- Signals carrued to common point (simplifies time division)

Front End Electronics

- Preamp
 - <1nsec shaping ⇔>150MHz bandwidth
 - HV disconnect

- Digitizer:
 - CMOS ASIC digitizer ADC & TDC
 - Low power

Dual TDC for Time Division

- Read out both ends, use time difference to get position along wire
- σ ≈ 3cm
- Each hit can be treated as a 3D point for pattern recognition
- Stereo resolution
 ~0.04cm dominates
 fit

ADC for dE/dx

- Lots of protons kicked out of target
- Thin sheet of plastic stops most of these
- But ... degrades resolution for electrons
- Can tolerate more protons ... if we can reject based on dE/dx

Momentum Resolution

- For 105MeV/c electrons
 - Upstream material modeled, but smearing excluded
 - Resolution relative to start of tracker

Occupancy

Hottest straw "Occupancy" ~3% (rate × 2-track resolution)

Other Requirements

- ✓ Low mass region for signal
- ✓ No mass region for DIO
- ✓ Handles rate based on ATLAS TRT
- ✓ Maintenance:
 - ✓ Stations can be swapped for repair
 - ✓ No single straw failure prevents operation
- ✓ Resolution: 118keV
- ✓ Leaks <5 ccm for full system
 </p>

Alignment

- In-situ alignment unusually challenging for mu2e
 - Few cosmics underground, fewer which cross many stations
 - No simple calibration sample
- Survey wires during construction using X-ray

Straws for Other Experiments

- High rate capability
 - Common since we are all seeking a tiny signal from a huge background
- Modular
 - Each straw is a ~complete detector in itself
 - Easy to test, build, align
- Low mass for measuring low momentum particles
 - Open cell structure can be lower if ambient vacuum is not required
 - Thin wall straws developed for mu2e could help
- Pattern recognition at high occupancy
 - For long straws time division can be an assist
- Lot of experience and R&D to draw from, for mu2e and elsewhere